Uncertainty quantification of simulation codes based on experimental data

Ken Hanson* and François Hemez[†]

*CCS-2, Methods for Advanced Scientific Simulations †ESA-WR, Engineering - Weapons Response Los Alamos National Laboratory

This presentation available at http://www.lanl.gov/home/kmh/

Overview

- Physics simulations codes
 - ▶ need to be understood on basis of experimental data
 - focus on physics submodels
- Bayesian analysis
 - more than parameter estimation
 - ▶ uncertainty quantification (UQ) is central issue
 - ▶ each new experiment used to improve knowledge of models
- Analysis process
 - employ hierarchy of experiments, from basic to fully integrated
 - ▶ goal is to learn as much possible from all experiments
- Example of analysis process: material model evolution

Schematic view of simulation code

- Simulation code predicts state of time-evolving system $\Psi(t)$ = time-dependent state of system
- Requires as input
 - $\Psi(0)$ = initial state of system
 - description of physics behavior of each system component; e.g., physics model A with parameter vector α (e.g., constitutive relations)
- Simulation engine solves the dynamical equations (PDEs)

Simulation code predicts measurements

- Simulation code predicts state of time-evolving system $\Psi(t)$ = time-dependent state of system
- Model of measurement system yields predicted measurements

Bayesian uncertainty analysis

- Uncertainties in parameters are characterized by probability density functions (pdf)
- Probability interpreted as quantitative measure of "degree of belief"
- Rules of classical probability theory apply
- Bayes law provides way to update knowledge about models as summarized in terms of uncertainty

Parameter value

Bayesian calibration

Estimation of model parameters and their uncertainties

- Bayesian foundation
 - ► focus is as much on uncertainties in parameters as on their best value
 - ▶ use of prior knowledge, e.g., previous experiments
 - model checking; does model agree with experimental evidence?

Forward and inverse probability

Model inference

- ▶ if uncertainties in measurements are smaller than prediction uncertainties that arise from parameter uncertainties, one may be able to use measurements to reduce uncertainties in parameters
- ► requires that prediction uncertainties are dominated by uncertainties in parameters and not by those in experimental set up
- good experimental technique important for Bayesian calibration

Analysis of hierarchy of experiments

- Information flow in analysis of series of experiments
- Bayesian calibration
 - ► analysis of each experiment updates model parameters and their uncertainties, consistent with previous analyses
 - information about models accumulates

Graphical probabilistic modeling

Propagate uncertainty through analyses of two experiments

- First experiment determines α , with uncertainties given by $p(\alpha | \mathbf{Y}_1)$
- Second experiment not only determines β but also refines knowledge of α
- Outcome is joint pdf in α and β , p(α , $\beta | \mathbf{Y}_{1}, \mathbf{Y}_{2}$) (NB: correlations)

Bayesian calibration for simulation codes

- Goal is to develop an uncertainty model for the simulation code by comparison to experimental measurements
 - ► determine and quantify sources of uncertainty
 - ▶ uncover potential inconsistencies of submodels with expts.
 - possibly introduce additional submodels, as required
- Recursive process
 - ► aim is to develop submodels that are consistent with all experiments (within uncertainties)
 - ► a hierarchy of experiments helps substantiate submodels over wide range of physical conditions
 - each experiment potentially advances our understanding

Motivating example

• Problem statement

- ▶ design containment vessel using high-strength steel, HSLA 100
- predict depth of vessel-wall penetration for specified shrapnel fragments at specified impact velocity
- estimate uncertainty in this prediction to estimate safety factor

Approach

- ► determine what experiments are needed to characterize stress-strain relationship for plastic flow of metal
- ▶ follow the uncertainty through the analysis of expt. data
- variables to consider: temperature, strain rate, variability in material composition, processing, behavior

Hierarchy of experiments - plasticity

- Basic characterization experiments measure stress-strain relationship at specific stain and strain rate
 - ► quasi-static low strain rates
 - ► Hopkinson bar medium strain rates
 - Partially integrated expts. Taylor test
 - covers range of strain rates
 - extends range of physical conditions
 - Full integrated expts.
 - mimic application as much as possible
 - projectile impacting plate
 - may involve extrapolation of operating range; so introduces addition uncertainty
 - ▶ integrated expts. can help reduce model uncertainties

Strain

Analysis of hierarchy of experiments

- Series of experiments to determine plastic behavior of a metal
- Information flow shown for analysis sequence
- Bayesian calibration
 - ► analysis of each experiment updates model parameters and their uncertainties, consistent with previous experiments
 - information about models accumulates throughout process

Stress-strain relation for plastic deformation

Analysis of quasi-static and Hopkinson bar measurements[†]

- Zerilli-Armstrong model
 for rate- and temperature dependent plasticity
- Parameters determined from Hopkinson bar measurements and quasistatic tests
- Full uncertainty analysis

 including systematic
 effects of offset of each
 data set
 (6 + 7 parms)

†data supplied by Shuh-Rong Chen

ZA parameters and their uncertainties

Parameters +/- rms error:

$$\alpha 1 = 103 \pm 33$$

 $\alpha 2 = 954 \pm 63$
 $\alpha 3 = 0.00408 \pm 0.00059$
 $\alpha 4 = 0.000117 \pm 0.000029$
 $\alpha 5 = 996 \pm 22$
 $\alpha 6 = 0.247 \pm 0.021$

RMS errors, including correlation coefficients, crucially important!

Correlation coefficients

	α1	α2	α3	α4	α5	α6
α1	1	-0.083	0.372	0.207	-0.488	0.267
$\alpha 2$	-0.083	1	0.344	0.311	0.082	0.130
α3	0.372	0.344	1	0.802	0.453	-0.621
α4	0.207	0.311	0.802	1	0.271	-0.466
α5	-0.488	0.082	0.453	0.271	1	-0.860
α6	0.267	0.130	-0.621	-0.466	-0.860	1

Monte Carlo sampling

• Use Monte Carlo to draw random samples from uncertainty distribution for Zerilli-Armstrong parameters

Taylor impact test

- Propel cylinder into rigid plate
- Measure profile of deformed cylinder
- Deformation depends on
 - cylinder dimensions
 - impact velocity
 - plastic flow behavior of material at high strain rate
- Useful for
 - determining parameters in materialflow model
 - validating simulation code (including material model)

Taylor test simulations

- Simulate Taylor impact test
 - ► Abaqus, commercial FEM code
 - ► Johnson-Cook model for rate-dependent strength and plasticity
 - ignore anisotropy, fracture effects
 - cylinder: high-strength steel15-mm dia, 38-mm long
 - ► impact velocity = 350 m/s
- Effective total strain reaches 250%

Plausible simulation predictions (forward)

- Generate plausible predictions for known uncertainties in parameters and initial conditions
- Monte Carlo method
 - run simulation code for each random draw from pdf for α , $p(\alpha|.)$, and initial state, $p(\Psi(0)|.)$
 - simulation outputs represent plausible set of predictions, $\{\Psi(t)\}$

Monte Carlo example - Taylor test

- Use MC technique to propagate uncertainties through deterministic simulation code
 - Draw value for each of four parameters from its assumed Gaussian pdf
 - Run Abaqus code for each set of parameters
- Figure shows range of variation in predicted cylinder shape

NESSUS/Abagus

High-strength steel HSLA 100 246 m/s impact velocity

Taylor test experiment

- Taylor impact test specimen
 - ► high-strength steel HSLA 100
 - ▶ impact velocity = 245.7 m/s
 - dimensions, final/initial
 length 31.84 mm / 38 mm
 diameter 12.00 mm / 7.59 mm

Comparison with experiment

- Don't have measurements of the deformed cylinder yet, but suppose we do
- ZA model parameters can be fit to Taylor data in same way as they were to basic material characterization data
- Results of previous analysis may be used as prior in this analysis

NESSUS/Abaqus

High-strength steel HSLA 100 246 m/s impact velocity

Parameter estimation - maximum likelihood

- Optimizer adjusts parameters (vector α) to minimize -ln $p(\mathbf{Y} | \mathbf{Y}^*(\alpha))$
- Result is maximum likelihood estimate for α (also known as minimum-chi-squared solution)
- Optimization process is accelerated by using gradient-based algorithms along with adjoint differentiation to calculate gradients of forward model

Parameter uncertainties via MCMC

- Markov Chain Monte Carlo (MCMC) algorithm generates a random sequence of parameters that sample posterior probability of parameters for given data \mathbf{Y} , $p(\alpha \mid \mathbf{Y})$, which yields plausible set of parameters $\{\alpha\}$.
- Must include uncertainty in initial state of system, $\{\Psi(0)\}$

Bayesian strategy for UQ of simulation code

- Hierarchy of experiments
 - ► basic designed to isolate and characterize a basic physical phenomenon at single
 - ► partially integrated involves more complex combination of phenomena, e.g., multiple materials, varying conditions, complex geometry, ...
 - fully integrated attempt to approach application conditions
- Inference use validation experiments to update info about model
 - capture info in terms of uncertainties
 - uncertainties indicate degree of confidence in prediction
 - ▶ attempt to develop model that is consistent with ALL available experiments
- Ultimate goal Combine results from many (all) experiments
 - reduce uncertainties in model parameters
 - require consistency of models with all experiments

Bibliography

- ► "A framework for assessing confidence in simulation codes," K. M. Hanson and F. M. Hemez, *Experimental Techniques* **25**, pp. 50-55 (2001); application of uncertainty quantification to simulation codes with Taylor test as example
- ► "A framework for assessing uncertainties in simulation predictions," K. M. Hanson, *Physica D* **133**, pp. 179-188 (2000); an integrated approach to determining uncertainties in physics modules and their effect on predictions
- ► "Inversion based on complex simulations," K. M. Hanson, *Maximum Entropy and Bayesian Methods*, pp. 121-135 (Kluwer Academic, 1998); describes adjoint differentiation and its usefulness in simulation physics
- ► "Uncertainty assessment for reconstructions based on deformable models," K. M. Hanson et al., *Int. J. Imaging Syst. Technol.* **8**, pp. 506-512 (1997); use of MCMC to sample posterior

These and related papers available at http://www.lanl.gov/home/kmh/